Heat exchanger
Cross flow heat exchanger,
Counter flow heat exchanger,
Rotary heat exchanger,
Steam Heating Coil
We specialize in the production of cross flow and counter flow heat exchangers, rotary heat exchangers, heat pipe heat exchangers, as well as air conditioning units and heat recovery units developed using heat exchange technology
Cross flow heat exchanger,
Counter flow heat exchanger,
Rotary heat exchanger,
Steam Heating Coil
Waste heat recovery from flue gas,Heat pump drying waste heat recovery,Mine exhaust heat extraction
Hygienic Air Handling Unit,
AHU With Heat Recovery,
Thermal wheel AHU,
AHU chilled water coil
Heat recovery fresh air ventilator,Heat pump fresh air ventilator,Unidirectional flow fresh air fan,Air purifier
Air to air heat exchangers are widely used in boiler flue gas waste heat recovery, heat pump drying waste gas waste heat recovery, food, tobacco, sludge, printing, washing, coating drying waste gas waste heat recovery, data center indirect evaporative cooling systems, water vapor condensation to remove white smoke, large-scale aquaculture energy-saving ventilation, mine exhaust heat extraction, fresh air system heat recovery and other fields
If you have a need for air to air heat exchangers, you can contact us
The heat recovery system of the paint booth mainly recovers the heat from the exhaust gas discharged from the paint booth through a heat exchange device, which is used to preheat the fresh air or other heating needs entering the paint booth, in order to achieve energy-saving purposes.
In the heat exchanger, the high-temperature exhaust gas discharged from the paint booth and the fresh air (or other heated medium) entering the paint booth flow on both sides of the partition wall, and heat is transferred through the partition wall. Due to the lack of direct contact between exhaust gas and fresh air, the mixing of the two is avoided, ensuring the cleanliness of the air. The heat of high-temperature exhaust gas is transferred to the partition wall, which then transfers the heat to fresh air, raising the temperature of the fresh air and achieving heat recovery and utilization.
Our commercial ventilation heat exchanger is a device used in the ventilation system of commercial buildings. Its main application principle is to use heat exchange technology to recover heat or cold from indoor polluted air while discharging it, in order to preheat or pre cool the fresh outdoor air introduced, thereby achieving energy conservation and improving indoor air quality. The specific principle is as follows:
Ventilation principle
Commercial ventilation heat exchangers are usually installed in the ventilation systems of commercial buildings, which use mechanical ventilation to expel polluted indoor air and introduce fresh outdoor air into the room.
This can ensure the freshness and circulation of indoor air, meet people's breathing needs in commercial environments, and also help maintain appropriate indoor temperature and humidity.
Heat exchange principle
There is a special heat exchange core inside the heat exchanger. When the air discharged from indoors and the air entering from outdoors flow in the heat exchange core, heat transfer occurs due to the temperature difference between the two.
Heating medium: The heat exchanger transfers heat to the drying medium (such as air, nitrogen, etc.) to increase its temperature. The hot drying medium comes into full contact with the sludge and transfers heat to the sludge through convection, conduction, and other means, causing the water in the sludge to absorb heat and evaporate into steam, thereby achieving the drying of the sludge.
Recycling waste heat: During the sludge drying process, a large amount of exhaust gas containing heat is generated. The heat exchanger can cool the exhaust gas and recover the heat from it. The recovered heat can be used to preheat fresh air or drying medium entering the dryer, as well as for other process links that require thermal energy, thereby improving the energy utilization efficiency of the entire drying system and reducing energy consumption.
Removing moisture: During the sludge drying process, the heat exchanger can not only heat the drying medium, but also condense the water vapor in the drying medium into liquid water through cooling, thereby achieving dehumidification of the drying medium. Dehumidification of the drying medium is beneficial for improving its ability to absorb moisture from sludge and enhancing the drying effect. For example, in some sludge drying systems that use circulating drying media, by setting up cooling heat exchangers to dehumidify the circulating air, the drying speed of sludge can be increased by 20% -30%.
Provide a drying heat source: Heat pump heat exchangers can raise the temperature of environmental heat or waste heat, providing a stable heat source for the food drying process. For example, in the process of drying fruits and vegetables, a heat pump drying system can heat the air to a suitable temperature (such as 50-70 ℃), allowing the moisture in the fruits and vegetables to slowly evaporate at a lower temperature. This not only preserves the nutritional content and flavor of the food, but also improves the drying efficiency. Compared with traditional hot air drying methods, it can save a lot of energy.
Recycling of Waste Heat from Drying Exhaust Gas: The exhaust gas emitted during the food drying process contains a certain amount of heat and moisture, which can be cooled by a heat pump heat exchanger to recover the heat and condense the moisture in the exhaust gas. The recovered heat can be used to preheat fresh air or other process steps, reducing energy consumption during the drying process. Taking mushroom drying as an example, recovering exhaust heat through a heat pump heat exchanger can reduce drying energy consumption by 20% -30%.
Thank you for your continuous support and encouragement