Heat exchanger
Cross flow heat exchanger,
Counter flow heat exchanger,
Rotary heat exchanger,
Steam Heating Coil
We specialize in the production of cross flow and counter flow heat exchangers, rotary heat exchangers, heat pipe heat exchangers, as well as air conditioning units and heat recovery units developed using heat exchange technology
Cross flow heat exchanger,
Counter flow heat exchanger,
Rotary heat exchanger,
Steam Heating Coil
Waste heat recovery from flue gas,Heat pump drying waste heat recovery,Mine exhaust heat extraction
Hygienic Air Handling Unit,
AHU With Heat Recovery,
Thermal wheel AHU,
AHU chilled water coil
Heat recovery fresh air ventilator,Heat pump fresh air ventilator,Unidirectional flow fresh air fan,Air purifier
Air to air heat exchangers are widely used in boiler flue gas waste heat recovery, heat pump drying waste gas waste heat recovery, food, tobacco, sludge, printing, washing, coating drying waste gas waste heat recovery, data center indirect evaporative cooling systems, water vapor condensation to remove white smoke, large-scale aquaculture energy-saving ventilation, mine exhaust heat extraction, fresh air system heat recovery and other fields
If you have a need for air to air heat exchangers, you can contact us
Indirect adiabatic cooling systems for data centers use a combination of evaporative cooling and heat exchange to efficiently manage heat loads while minimizing water use and maintaining air quality. Below is an explanation of how these systems work and their application in data centers:
Indirect adiabatic cooling leverages the natural cooling effect of water evaporation without directly introducing moisture into the data center’s internal air stream. The process involves two separate airflows and a heat exchanger:
Indirect adiabatic cooling systems in data centers often operate in multiple modes to optimize efficiency:
Indirect adiabatic cooling systems are widely used in modern data centers due to their balance of efficiency, sustainability, and reliability. Specific applications include:
Indirect adiabatic cooling systems for data centers use evaporative cooling indirectly through a heat exchanger to pre-cool outdoor air, efficiently transferring heat from the data center environment while preserving air quality and reducing resource consumption. They are a cornerstone of modern, sustainable data center design, balancing energy efficiency, water conservation, and operational reliability. For facilities with specific heat loads or climate conditions, these systems can be customized to maximize performance, making them a versatile solution for the growing demands of digital infrastructure.
The counter current heat exchange core used for food drying utilizes the principle of heat conduction to allow high-temperature drying exhaust gas and low-temperature fresh air to flow in a counter current manner inside the core. Heat exchange is carried out through a heat-conducting plate, allowing fresh air to heat up and exhaust gas to cool down, achieving energy recovery and improving the energy utilization efficiency of the drying system. By recovering heat through the heat exchange core, the drying temperature and humidity can be more accurately controlled.
The core frame is generally made of materials such as aluminum zinc coated plate, galvanized plate, or stainless steel plate to meet different environmental requirements and ensure long-term stable operation.
The counterflow design maintains a relatively large temperature difference between the cold and hot air flows throughout the entire heat exchange process, promoting heat transfer, improving heat exchange efficiency, and achieving energy recovery efficiency of over 50%. Widely used in various food drying fields, such as the processing of dried fruits, dried vegetables, dried meat products, dried seafood, and dried grains.
The air handling units on board ships must be equipped with high-quality heat exchangers to provide uninterrupted fresh air. Our air to air heat exchangers are the perfect choice for ship or coastal applications.
The use of air-to-air heat exchangers in ship ventilation systems can not only introduce fresh air, but also recover the energy of the discharged air, preheat or pre cool fresh air, and reduce overall energy consumption. At the same time, it effectively reduces the risk of equipment failure due to high temperatures.
We accurately calculate the heat transfer area, air volume, and other parameters of the required heat exchanger based on the spatial size, ventilation requirements, and heat load of different areas of the ship. A plate fin heat exchanger with a large heat exchange area and high air volume can be selected to ensure efficient heat recovery and air exchange. Consider the operating environment of the ship and choose materials with strong corrosion resistance. We use hydrophilic aluminum foil heat exchange material, which not only has good thermal conductivity, but also effectively resists corrosion from seawater and humid air, extending the service life of the equipment.
Solar inverters generate a large amount of heat during operation. If this heat is not dissipated in a timely manner, the internal temperature of the inverter will continue to rise, leading to a decrease in device performance, shortened lifespan, and even causing malfunctions. Therefore, based on solar inverters with different heat exchangers, we provide you with suitable cooling solutions.
Air cooled heat exchangers use air as a cooling medium and force air to flow over the surface of the heat exchanger through a fan to achieve heat exchange.
Design selection: We determine the size, heat dissipation area, and fan air volume and pressure of the air-cooled heat exchanger based on the power size, heating power, and operating environment of the inverter. Generally speaking, compact plate fin air-cooled heat exchangers can be used for small solar inverters, which have the characteristics of small size and high heat dissipation efficiency; Large inverters can use tube and strip air-cooled heat exchangers, which have a large heat dissipation area and can meet high-power heat dissipation requirements.
Liquid cooled heat exchangers use liquid as the cooling medium, which circulates inside the heat exchanger, absorbs the heat generated by the inverter, and then dissipates the heat to the external environment through the radiator.
If you have any needs, please contact us immediately.
Thank you for your continuous support and encouragement