Cooling principle of heat exchangers in computer rooms and data centers

Data centers face dual challenges of soaring chip power density and carbon neutrality targets. Our hydrophilic aluminum foil heat exchanger, as a new generation of energy-saving and heat dissipation core equipment, has become a key technological path for the low-carbon transformation of the industry by leveraging the collaborative innovation of aluminum based high thermal conductivity and microporous hydrophilic structure to reconstruct the thermal management efficiency of data centers.

Principle of indirect evaporative cooling of energy-saving heat exchangers in computer rooms and data centers
Technical principles
Indirect evaporative cooling process: Indirect evaporative cooling technology utilizes the principle of water evaporation absorbing heat to achieve cooling. Hydrophilic aluminum foil is a type of aluminum foil with a specially treated surface that exhibits excellent hydrophilicity. In the radiator, hydrophilic aluminum foil is used to enhance the heat exchange effect. It can evenly spread water on its surface, forming a thin water film, increasing the contact area between water and air, thereby improving evaporation efficiency. Meanwhile, hydrophilic aluminum foil can effectively prevent the adhesion of scale and dirt, maintaining the stability of the radiator performance.
Heat exchange process: After evaporative cooling, the cold air exchanges heat with the hot air in the computer room through a heat exchanger, cooling the hot air in the computer room and achieving the goal of reducing the temperature of the computer room.
advantage
Efficient and energy-saving: Compared with traditional air conditioning cooling methods, indirect evaporative cooling radiators utilize the natural principle of evaporative cooling and do not require a large amount of electricity to compress the refrigerant, thus significantly reducing energy consumption. The use of indirect evaporative cooling technology in data centers can save a significant amount of energy costs.

Leave a Reply

Need Help?